
As you might imagine, I spend lots of
my time reading technical books
and electronic journals. Recently, to

cut the ice, I’ve been reading about the
exploits of men who flew and crewed B-17
bombers for the Eighth Air Force in World
War II. If you recall your history, the flyers of
the “Mighty Eighth” had one of the highest
casualty rates in the war. Why? Because they
were doing something that had never been
done before.

On a daily basis, these men braved high
altitude cold, bad weather, anti-aircraft fire,
enemy fighters, and mid-air collisions with
their own bombers to attempt to put their
thin-skinned aircraft, tons of aviation gasoline,
and bombs over a predetermined ground
target in broad daylight.

Electric flying suits (a precursor to
electric sleeping blankets), wool-lined flying
jackets and shoes, and oxygen were essential
to the survival of the crews while on their
dangerous missions. I’m not going to take you
flying on a B-17, but — like the B-17 flyboys —
we will today be doing something no one else
has done. Snap up that flight jacket and take
a deep breath from that oxygen mask
because — for the rest of this article — you will
be breathing pure oxygen at high altitudes.
We’re going to fly some highly technical
missions on Little Bits, which is powered by a
pair of PIC10F206 engines.

The PIC10F20X Family of
Microcontrollers

The PIC10F206 is the largest of the
tiniest microcontrollers in the world. The
PIC10F200 and PIC10F204 microcontrollers
contain 256 words of program Flash and 16
bytes of SRAM. The PIC10F202 and
PIC10F206 microcontrollers are loaded with
double the program Flash of the PIC10F200
and PIC10F204 microcontrollers (512 bytes)
and contain eight more bytes of SRAM
(24 bytes).

The differentiator of the same-sized
variants of the PIC10F20X family is the
addition of an onboard comparator found in
the PIC10F206 and PIC10F204 silicon. Both
the PIC10F206 and PIC10F204 comparator
modules are governed by an internal absolute
voltage reference with all comparator inputs
and outputs visible on their respective
multiplexed I/O pins. The output of the
comparator can also be configured not to be
shown on the microcontroller I/O pin.

Each PIC10F20X microcontroller has four
multiplexed I/O pins, which include three
bi-directional I/O pins (GP0, GP1, and GP2)
and one input only pin (GP3) when all of the
I/O pins are configured for general-purpose
I/O mode. All of the GPIO (General-Purpose
Input Output) pins except GP2 can be config-
ured with weak pull-ups and wake-up on
change operation. Each I/O pin can source or
sink 25 mA, which results in a total of 75 mA
that can be sourced or sunk by the
PIC10F20X microcontroller’s I/O port.

Thus, the PIC10F20X family of microcon-
trollers can directly drive small resistive loads
and LEDs.

Clocking for the PIC10F20X microcon-
trollers is provided internally. A 4 MHz internal
clock supplies 1 μS instruction cycles that
drive the PIC10F20X’s processing engine. The
internal clock is factory calibrated and is
accurate to ±1%. Cycles from the internal
clock can be used to drive the PIC10F20X’s
on-chip eight-bit timer. The eight-bit timer can
also be configured to be driven externally via

DECEMBER 2004

The Ever-Shrinking μC
Six Pins and One MIP — If You Can See It!

30

N
U

T
S

&
VO

LT
S

Ev
er

yt
hi

ng
 F

or
 E

le
ct

ro
ni

cs

This Month’s
Projects

Ever-Shrinking μC . . .30
Remote Trigger 38
Muscle Whistler . . . 42
Airplane Camera . . . 46
Parking Assistant . . . 50
Telephone Rang 54
Zeroing Circuitry . . 56

The Fuzzball
Rating System

To find out the level
of difficulty for each

of these
projects, turn to

Fuzzball for
the answers.

The scale is from
1-4, with four

Fuzzballs being
the more difficult

or advanced
projects. Just look
for the Fuzzballs in
the opening header.

You’ll also find
information included in

each article on any
special tools

or skills you’ll
need to complete the

project.

Let the
soldering begin!

Project by Peter Best

Figure 1. Yep, the PIC10F206 is a tiny bugger, but
it’s still big enough to allow you to hang some
wire-wrap wire off of its pins or solder it onto

a set of SOT-23 copper pads.

the T0CKI pin (GP2) or from the output of the comparator.
Like the rest of Microchip’s PIC microcontrollers, the
PIC10F20X series also includes an integral WDT
(Watchdog Timer), program Flash code protection, ICSP
(In Circuit Serial Programming) capability, and sleep
mode.

The typical PIC10F20X is very similar logically to the
PIC12F508 and PIC12F509 microcontrollers, but — as you
can see in Figure 1 — the PIC10F20X is a much smaller
beast. With only four I/O pins, one would wonder what
could be done with such a miniscule microcontroller. Take
another deep breath — we’re going up ...

Little Bits

Even though the PIC10F20X microcontrollers are tiny,
there is no reason why the average Microcontroller Joe
can’t put them to use. Believe it or not, you can actually
solder some wire-wrap wire to each of the PIC10F20X’s six
pins and breadboard the little bugger just like you would
any other electronic part. On the other hand, you could
also put together a specialized PIC10F20X printed circuit
board that would include a regulated +5 VDC power source, an ICSP socket, and some LEDs with a breadboard

DECEMBER 2004

The Ever-Shrinking μC

31

Figure 2. Little Bits is a combination of a regulated 5 VDC
power supply and a pair of PIC10F206 microcontrollers.

A third PIC10F206 can be programmed and run from the Wells-CTI
SOT-23 programming socket position.Two banks of jumper-selectable

LEDs are included to free you from having to pull out that logic
probe.This photo also shows the dual-row 20-pin female header

I added to allow easy access to the pair of Little Bits’
PIC10F206 microcontrollers.

64

+5VDC

20K

+5VDC

OPTIONAL GPIO SOCKET

GND

VCC

6

4

3

1

6

4

3

1

U2

PIC10F206

1

2

3 4

5

6
GP0/CIN+

Vss

GP1/CIN- GP2/TOCKI

Vdd

GP3/MCLR

1K

GP3

D5

GP3

VDD

ICSP CONNECTOR

1

2

3

4

5

6

1

2

3

4

5

6

R6

331

D4

+5VDC

 ALL RESISTORS 1% UNLESS NOTED OTHERWISE

VDD

VR1
LM340S-5.0

1 3

2

IN OUT

G
N

D

GP2

HEADER AREA

1

3

4

6

3

1N5189

+5VDC

10K

U1_GP0

+5VDC

PROGRAMMING SOCKET

PIC10F20X

1

2

3 4

5

6
GP0/CIN+

Vss

GP1/CIN- GP2/TOCKI

Vdd

GP3/MCLR

JR1

1

2

D6

+

100uF

U2_GP3

R2

331

63

2N2222A

DB9 FEMALE

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

GP2

U1_GP3

R5

331

SP233ECT

2

1

3

20

12

15

16

11

10

17

5

18

4

19

T1 IN

T2 IN

R1OUT

R2OUT

C2+

C2+

C2-

C2-

V-

V-

T1OUT

T2OUT

R1 IN

R2 IN

+5VDC

D3

1

R4

331

RS-232

SP233ECT PIN 7 = +5VDC

SP233ECT PINS 6,9 = GND

+10VDC

R3

331

470uH

VOLTAGE BOOSTER

GP1

U1_GP2

C4

.1uF

BYPASS CAPS FOR PIC1020X

GP3

U2_GP2

C5

.1uF

+5VDC

GP0

C3

.1uF

4

C2

.1uF

GND

U1

PIC10F206

1

2

3 4

5

6
GP0/CIN+

Vss

GP1/CIN- GP2/TOCKI

Vdd

GP3/MCLR

+9VDC

D8

VDD

D2

1

ONE-SHOT

U2_GP0

+C1

10uF

U1_GP1

U2_GP1

D7

1N5819

D1

R7

331

R1

331

Figure 3. The ICSP connector in the schematic is common to all of the PIC10F20X microcontrollers. Jumper blocks allow for
easy configuration of the Little Bits microcontrollers.

area. I went with Plan B and assembled the dual
PIC10F206-based development board you see in Figure
2. The design you’re looking at in Figure 2 is called Little
Bits and it can program and run up to three PIC10F206
microcontrollers simultaneously.

As you can see in Figure 2, Little Bits is the classic
implementation of the PIC10F206 microcontroller. Two of
the PIC10F206 microcontrollers can be directly attached

to Little Bits’ onboard banks of LEDs via standard .1 inch
jumper pin sets. There may be situations where you may
not wish to run all of the PIC10F206 microcontrollers
at the same time. So, power to each individual PIC10F206
is controlled by a VDD jumper, which also allows
quick individual PIC10F206 or PIC10F20X power-on
resets, depending on which PIC10F20X you have in the
programming socket.

Speaking of programming sockets ... For those who
need to program a PIC10F20X for use in an external
circuit, Little Bits is equipped with a Wells-CTI SOT-23
programming socket and a third ICSP interface. The
Wells-CTI socket position can also be used as yet another
PIC10F20X hardstand, as the PIC10F20X I/O pins for the
Wells-CTI position are brought out to a header pin area on
the Little Bits Development Board. Take a close look at
Figure 4 to get a view of the mechanics behind the Wells-
CTI programming/burn-in socket.

Little Bits’ Logic

The PIC10F206 was designed to be a utilitarian
microcontroller that can stand in for standard logic ICs,
generate and manipulate clocks, and perform small,
programmable tasks. With some help from the HI-TECH
PICC PIC10F20X C compiler, Microchip’s MBLAB, and a
Microchip MPLAB ICD 2, I’ll show you how easy it is to
apply some logic with the PIC10F206 and Little Bits.

Before we begin to code our Little Bits microcon-
trollers, there are some things on the hardware honey-do
list that we need to finish up. As you can see in Figure 3,
the two banks of LEDs that are common to the pair of
permanently mounted PIC10F206s are separated from
the PIC10F206’s I/O pins by a jumper connection. To be
able to see what state each particular I/O pin is in
requires a jumper between the I/O pin and its respective
LED. The problem is that, when an LED is connected to
an I/O pin using a jumper block, there is no way to get
the signal to and from the I/O pin/LED combination, as
the jumper block is obscuring the I/O pin interface.

To circumvent that problem, I came up with a little Y
connector that consists of a couple of pieces of standard
hook-up wire terminated with three .025 inch square
female terminal post pins (Jameco part number
100765CX). The idea is to connect the PIC10F206 I/O
pin to the LED with the double point of the Y jumper
assembly and feed or receive the I/O signal with the
single point of the Y jumper assembly. To keep the Y
cable points from coming into electrical contact with
each other, I added a bit of shrink tubing to each of the
exposed points of the Y connector. Y connectors with
and without shrink tubing and their uses are shown in
Figure 5.

Since I’m not pushing a single application here, we’ll
be adding auxiliary supporting hardware as we gain
altitude with our PIC10F206 projects. So, rather than

Project

32

N
U

T
S

&
VO

LT
S

Ev
er

yt
hi

ng
 F

or
 E

le
ct

ro
ni

cs

DECEMBER 2004

Figure 5. The Y connector is pulling a signal from GP2 of the
PIC10F206 running the TOGGLER program and feeding it into the
input pin (GP3) of the PIC10F206, emulating an inverter.The two
points of the Y allow the viewing of the source logic level changes.

The PIC10F206 inverter’s output is GP2 and is jumpered to an LED
for easy viewing of the inverter output logic state changes.

Figure 4. This is a view of a PIC10F206 in the jaws of the Wells-
CTI programming socket.The orientation of the PIC10F20X parts
inside the programming socket is silk screened on the Little Bits

printed circuit board, just above the programming socket.

overload the Little Bits bread-
board area, I added a dual-row
20-pin, .1 inch-spaced female
connector (Jameco part number
70826) to my Little Bits to allow
the association and disassocia-
tion of external hardware that is
fitted with a matching set of
dual-row male .025 inch header
posts. This will come in handy
when we teach the PIC10F206
to control external devices and
communicate with the outside
world.

PIC10F206 as an
Inverter

Let’s begin by casting the
PIC10F206 as an inverter: the
simplest of which is a 7404 or
74XX04, where XX can be HC,
LS, etc. The typical logic inverter
is a two-pin device that consists
of an input and a complementary
output. Since we have four I/O
pins on a PIC10F20X, we can
implement up to two inverter
modules per microcontroller.
So, let’s choose GP3 — the
input-only I/O pin — as our
inverter #1 input and GP2, a
bi-directional I/O pin, as our
inverter #1 output.

The reason for choosing
GP3 is rather obvious. The
reason I chose GP2 as the
output is because I can leave
the MPLAB ICD 2 connected to
Little Bits and still see the inverter
code function via a LED
patched into the GP2 output pin.
The latest version of MPLAB
IDE includes the ability to reset
the target PIC and release the
reset to the target PIC from within
the MPLAB IDE. Therefore, I can
write my C code, program the
PIC10F206, and start and stop
the PIC10F206’s code execution
all from the same MPLAB IDE
window.

Every bit of code you’ll see
from now on will be C with a HI-
TECH PICC flavor. The HI-TECH
folks are way ahead of the curve

The Ever-Shrinking μC

DECEMBER 2004 33

//***
//* HI-TECH C SOURCE CODE FOR INVERTER MODULE
//***

#include <pic.h>

__CONFIG(MCLRDIS & WDTDIS & UNPROTECT);

void main()
{
TRIS = 0b11111011; //GP2 = output : GP3 = input
FOSC4 = 0; //GP2 = I/O pin
CMCON = 0b11110111; //comparator off
OPTION = 0b11001111; //pull-ups and wake-up off

while(1) //loop forever
{
if(GPIO & 0b00001000) //look for a high on GP3
GP2 = 0; //GP3 was high

else
GP2 = 1; //GP3 was low

}//while(1)
}//main

//***
//* RESULTING ASSEMBLER FROM HI-TECH C COMPILER
//***

1 processor 10F206
2 opt pw 79
3 psect __Z18698RS_,global,delta=1
4 psect

ctext0,local,size=512,class=ENTRY,delta=2
5 psect config,global,class=CONFIG,delta=2
6 psect

text0,local,class=CODE,with=ctext0,delta=2
7 psect text1,local,class=CODE,delta=2

18 psect __Z18698RS_
19 008
20 008 ;#
21
22 psect config
23 3FF FEB dw 4075 ;#
24
25 psect text0
26 1F1 _main
27 ;inverter.c: 33: TRIS = 0b11111011;
28 1F1 CFB movlw -5
29 1F2 006 tris 6
30 ;inverter.c: 34: FOSC4 = 0;
31 1F3 405 bcf 5,0
32 ;inverter.c: 35: CMCON = 0b11110111;
33 1F4 CF7 movlw -9
34 1F5 027 movwf 7 ;volatile
35 ;inverter.c: 36: OPTION = 0b11001111;
36 1F6 CCF movlw -49
37 1F7 002 option
38 ;inverter.c: 38: while(1){
39 1F8 l3
40 ;inverter.c: 39: if(GPIO & 0b00001000)
41 1F8 766 btfss 6,3 ;volatile
42 1F9 BFC goto l5
43 ;inverter.c: 40: GP2 = 0;
44 1FA 446 bcf 6,2
45 ;inverter.c: 41: else
46 1FB BF8 goto l3

Listing 1. Chances are you’ll never need to inspect the assembler code that the
HI-TECH PICC C compiler generates. My purpose of showing it to you here is to

point out how good the assembled C code really is.

(continued ...)

and at this writing have the only fully functional
PIC10F20X compiler — C or BASIC. You may be asking
yourself why I’m using C when assembler would be more
compact and efficient. If you are indeed asking yourself
this question, you’re in for a surprise — breathe deeply and
pull back the stick.

The C rendition of our PIC10F206 inverter code is
shown in its entirety in Listing 1. The #include <pic.h>
statement brings in all of the predefined names and loca-
tions that the HI-TECH PICC C compiler needs to associate
the names and locations in our C source code to the

PIC10F206 hardware. In fact, the
pic.h include files bring in a
specific set of definitions for the
PIC10F206, which is defined in
the very first line of the HI-TECH
PICC C compiler-generated
assembler listing. The __CONFIG
statement sets up the PIC10F206
fuses. If you’ve ever written any
PIC assembler, the only unfamil-
iar parameter is MCLRDIS, which
configures the GP3 line as an I/O
input. Otherwise, GP3 doubles as
the MCLR pin.

The beginning of our inverter C code simply turns
off all of the PIC10F206 frills and sets the PIC10F206’s
internal muxes to configure all of the PIC10F206’s four I/O
pins as GPIO. All of the inverter’s working code lies
between the while(1) braces. The while(1){} construct
forms an endless loop. Within the endless loop, we are
simply looking at GP3 and toggling GP2 in the opposite
logical direction of what we see at GP3.

I’ve also provided the assembler listing that is generated
by the HI-TECH PICC C compiler. I’ve eliminated the line
numbers that did not contain any useful information for
our discussion. The HI-TECH PICC C compiler collects like
kinds of data in what are called psects or program
sections. Without going into great detail, lines 3-7 and
18 define the psects. It’s a logical process and you can see
the names and types of program sections in the actual
assembler code that are defined within the initial psect
statements.

The HI-TECH PICC C compiler linker uses the psects
to group like kinds of data into their appropriate memory
areas of the PIC10F206. For instance, code in the psect
text0 and psect text1 areas is placed in the PIC10F206’s
ROM (program Flash) area. Note that configuration
fuse data is located in the CONFIG psect. Don’t get too
wrapped up about psects, as we’re going to let the compiler
automatically handle them for the PIC10F206.

Take a look at the very last line of Listing 1. You’ll
notice that the locations of labels 13 and 15 are listed.
Also, note that the actual program code is placed into the
PIC10F206 program memory, beginning at physical
address 0x1F1, which is logically program location
0x0000. That may seem odd, but the HI-TECH PICC
C compiler purposely puts things where they are for
efficiency.

You’ve seen the mnemonics shown in the assembler
listing beginning at _main in your own PIC assembler pro-
grams. Note that the binary numeric arguments in the C
source are treated as negative 2’s complement binary
numbers in the assembler source statements. When using
signed binary arithmetic, the most significant bit is used as
a sign bit with 1 signifying a negative number and 0
indicating the number is positive. For instance,

Project

DECEMBER 2004

47 1FC l5
48 ;inverter.c: 42: GP2 = 1;
49 1FC 546 bsf 6,2
50 ;inverter.c: 43: }
51 1FD BF8 goto l3
52
53 psect text1
54 0000

HI-TECH Software PICC Macro Assembler V8.05
Symbol Table Fri Aug 20 13:44:07 2004

l3 01F8 l5 01FC _main 01F1 start 0000

(Listing 1, continued)

34

N
U

T
S

&
VO

LT
S

Ev
er

yt
hi

ng
 F

or
 E

le
ct

ro
ni

cs

Circle #40 on the Reader Service Card.

0b11111011 is the 2’s comple-
ment representation of -5. If that
is true, then the negative number
2’s compliment rule states that
— if I invert every bit within
0b11111011 and add 1 — I
should be able to add the inverted
result of the original number
(0b00000101 or +5) to the orig-
inal number (0b11111011 or -5)
and end up with 0. Let’s try that:

11111011 original
+ 00000101 flipped + 1

100000000

What’s up with that? My TI
Voyage 200 in binary mode indi-
cates the same answer, which is
decimal 256. Remember, we’re
only working with eight bits. The
carry of a 1 out to the ninth bit
indicates that the result of the
binary addition is positive. In
this case, the binary addition
result of 0 (0b00000000) is
considered positive. No carry
out of the ninth bit would leave
the most significant bit at 1,
indicating a negative result.

Let’s get back to how the
inverter code operates. The
inverter assembler code is very
tight. The C source statements
are followed by their assembler
counterparts. Do you think
you could have written the
assembler code from scratch
any better than the C compiler
did? For those of you who
nodded your heads yes, let’s
add that second inverter.

The dual-inverter C source
in Listing 2 is quite a bit different
than our simple single inverter
code. GP0 has been assigned as
the input for Inverter #2 with
GP1 acting as the inverter #2
output. The rest of the code is
simply looking at GPIO and
testing for every possible logical
combination of the input pins:
GP0 and GP3. The result of the
switch (GPIO & 0b00001001)
statement determines which
case statement will execute. All

DECEMBER 2004 35

//***
//* HI-TECH C SOURCE CODE FOR DUAL INVERTER MODULE
//***
void main()
{
TRIS = 0b11111001; //GP3 = input #1 : GP2 = output #1

//GP0 = input #2 : GP1 = output #2
FOSC4 = 0; //GP2 is an I/O pin
CMCON = 0b11110111; //comparator off:pullups off:wakeup off
OPTION = 0b11001111; //prescaler assigned to WDT

while(1) //loop forever
{
switch(GPIO & 0b00001001)
{
case 0b00000000: //inverter #1 input = LOW
GP1 = 1; //inverter #2 input = LOW
GP2 = 1;
break;

case 0b00000001: //inverter #1 input = LOW
GP1 = 0; //inverter #2 input = HIGH
GP2 = 1;
break;

case 0b00001000: //inverter #1 input = HIGH
GP1 = 1; //inverter #2 input = LOW
GP2 = 0;
break;

case 0b00001001: //inverter #1 input = HIGH
GP1 = 0; //inverter #2 input = HIGH
GP2 = 0;
break;

}//switch
}//while(1)

}//main

//***
//* RESULTING ASSEMBLER FROM HI-TECH C COMPILER
//***

1 processor 10F206
2 opt pw 79
3 psect __Z18698RS_,global,delta=1
4 psect

ctext0,local,size=512,class=ENTRY,delta=2
5 psect config,global,class=CONFIG,delta=2
6 psect

text0,local,class=CODE,with=ctext0,delta=2
7 psect text1,local,class=CODE,delta=2
8 psect

temp,global,ovrld,class=BANK0,space=1,delta=1
19 psect __Z18698RS_
20 00C
21 00C ;#
22
23 psect config
24 3FF FEB dw 4075 ;#
25
26 psect text0
27 1D8 _main
28 ;dual_inverter.c: 52: TRIS = 0b11111001;
29 1D8 CF9 movlw -7
30 1D9 006 tris 6
31 ;dual_inverter.c: 53: FOSC4 = 0;
32 1DA 405 bcf 5,0
33 ;dual_inverter.c: 54: CMCON = 0b11110111;
34 1DB CF7 movlw -9

Listing 2. It would defeat the purpose of using C, but you could actually write your application
in C and then look at the generated assembler to figure out how to write that same

application more efficiently with assembler.

The Ever-Shrinking μC

(continued ...)

of the possible logical combina-
tions of the inverter pair outputs
are found within the four case
statements.

The assembler code for our
dual inverter is a bit more hairy, as
well. The big picture is that the
code immediately jumps to label
16 and gathers the states of the
inverter input pins. The code then
jumps to label l30004, where the
inverter logic is performed.
Depending on the outcome of the
logic computation, the program
then jumps to the appropriate case
statement — beginning at label 17
— and sets the inverter pair output
pins.

I’ve taken the liberty of placing
the compiler build output at the
bottom of Listing 2 to show you
where everything is located within
the PIC10F206. Note the psect
temp and the reservation of four
bytes of memory beginning at
SRAM location 0x008. Do you still
think you can write better assem-
bler code than that produced by
the HI-TECH PICC C compiler? If
you’re still nodding yes, you had
better turn on that electric flying
suit. We’re gaining altitude.

I think you have the idea now.
You're all checked out on the
PIC10F controls and we're flying
level. That flight suit is pretty warm
right now, but I don't want your feet
to get cold. So, go aft and find that
pair of wool-lined flight boots
because, next time, we're going to
be gaining even more altitude. So
far, we've looked at the PIC10F, a
hardware platform called Little
Bits, the HI-TECH C Compiler that
drives them, and an inverter
application.

Next time — as we pull the
yoke back — we'll fly through
coding a two-input and three-input
AND gate. I'll also describe how to
construct various other logic gates
using the PIC10F microcontroller.
When we've flown through logic
gate altitude, I'll show you how to
code a D FLIP-FLOP. The air will be
thin, but we'll keep climbing and

DECEMBER 2004

35 1DC 027 movwf 7 ;volatile
36 ;dual_inverter.c: 55: OPTION = 0b11001111;
37 1DD CCF movlw -49
38 1DE 002 option
39 ;dual_inverter.c: 57: while(1){
40 1DF BF6 goto l6
41 ;dual_inverter.c: 58: switch(GPIO &

0b00001001)
42 1E0 l7
43 ;dual_inverter.c: 59: {
44 ;dual_inverter.c: 61: GP1 = 1;
45 1E0 526 bsf 6,1
46 1E1 BE3 goto L1
47 ;dual_inverter.c: 62: GP2 = 1;
48 ;dual_inverter.c: 63: break;
49 1E2 l8
50 ;dual_inverter.c: 64: case 0b00000001:
51 ;dual_inverter.c: 65: GP1 = 0;
52 1E2 426 bcf 6,1
53 1E3 L1
54 ;dual_inverter.c: 66: GP2 = 1;
55 1E3 546 bsf 6,2
56 ;dual_inverter.c: 67: break;
57 1E4 BF6 goto l6
58 1E5 l9
59 ;dual_inverter.c: 68: case 0b00001000:
60 ;dual_inverter.c: 69: GP1 = 1;
61 1E5 526 bsf 6,1
62 1E6 BE8 goto L2
63 ;dual_inverter.c: 70: GP2 = 0;
64 ;dual_inverter.c: 71: break;
65 1E7 l10
66 ;dual_inverter.c: 72: case 0b00001001:
67 ;dual_inverter.c: 73: GP1 = 0;
68 1E7 426 bcf 6,1
69 1E8 L2
70 ;dual_inverter.c: 74: GP2 = 0;
71 1E8 446 bcf 6,2
72 1E9 BF6 goto l6
73 1EA l30004
74 1EA 20A movf btemp+2,w
75 1EB 643 btfsc 3,2
76 1EC BE0 goto l7
77 1ED F01 xorlw 1
78 1EE 643 btfsc 3,2
79 1EF BE2 goto l8
80 1F0 F09 xorlw 9
81 1F1 643 btfsc 3,2
82 1F2 BE5 goto l9
83 1F3 F01 xorlw 1
84 1F4 643 btfsc 3,2
85 1F5 BE7 goto l10
86 ;dual_inverter.c: 75: break;
87 1F6 l6
88 1F6 206 movf 6,w ;volatile
89 1F7 E09 andlw 9
90 1F8 02A movwf btemp+2
91 1F9 06B clrf btemp+3
92 1FA 20B movf btemp+3,w
93 1FB 643 btfsc 3,2
94 1FC BEA goto l30004
95 1FD BF6 goto l6
96
97 psect text1
98 0000

136 psect temp

(Listing 2, continued)

Project

36

N
U

T
S

&
VO

LT
S

Ev
er

yt
hi

ng
 F

or
 E

le
ct

ro
ni

cs

(continued ...)

write some PIC10F pulse generation code.
When you think the contrails can't get any
thicker, pull out that Digital Filter
Development Board because I'm going to
pair it with the Little Bits Development Board
to show you how easy it is to code RS-232
routines that run on the world's smallest
microcontroller. NV

137 008 btemp
138 008 ds 4

Psect Usage Map:

Psect	Contents	Memory Range
init | Initialization code | $0000 - $0000
end_init | Initialization code | $0001 - $0001
text | Program and library code | $01D8 - $01FD
vectors | Reset vector | $01FE - $01FE
temp | Temporary RAM data | $0008 - $000B
config | User-programmed CONFIG bits | $03FF - $03FF

Memory Usage Map:

Program ROM $0000 - $0001 $0002 (2) words
Program ROM $01D8 - $01FE $0027 (39) words

$0029 (41) words total Program ROM
Bank 0 RAM $0008 - $000B $0004 (4) bytes total Bank 0 RAM
Config Data $03FF - $03FF $0001 (1) words total Config Data

Program statistics:
Total ROM used 41 words (8.0%)
Total RAM used 4 bytes (16.7%)

The Ever-Shrinking μC

DECEMBER 2004

(Listing 2, continued)

HI-TECH Software
HI-TECH PICC C compiler

www.htsoft.com

Microchip
MPLAB ICE 2000

PIC10F206
MPLAB IDE

www.microchip.com

EDTP Electronics, Inc.
Little Bits

Digital Filter Development Board
www.edtp.com

Resources

37Circle #55 on the Reader Service Card.

JANUARY 200542

N
U

T
S

&
VO

LT
S

Ev
er

yt
hi

ng
 F

or
 E

le
ct

ro
ni

cs

If, after reading Part 1 last month, you’ve been wonder-
ing why there are two PIC10F206s on the Little Bits
Development Board, here’s part of that answer: The

inverter pair we just implemented can be tested by simply
moving jumpers carrying the desired logic levels between
the inverter inputs and watching the inverter outputs on
the LEDs. Instead of swapping around jumpers, the
second PIC10F206 can be used as stimulus for the first
PIC10F206. I wrote a small piece of code called

TOGGLER that does nothing but count from 0 to 7
continually. Using jumpers, I feed the output of the
PIC10F206 running TOGGLER to the input of the inverter
pins of the PIC10F206 running the inverter code. As
the count progresses, all of the possible inverter input
combinations are provided to the inputs of the inverter
pair we realized with the other PIC10F206. The C source
for TOGGLER is shown in Listing 3.

I think you have the idea now. So, I’ve included some
C code for a two-input AND gate in Listing
3, as well. There’s always more than one
way to skin a cat when coding. I’ve also
included an optimized version of the two-
input AND gate code in Listing 3 for your
approval. From the example code I’ve
presented, you should now be able to
create many other logic gates, including a
three-input AND gate, an EXCLUSIVE
OR/NOR gate, and an OR/NOR gate.

For instance, to fabricate a NAND
gate, all you have to do is invert the
output levels within the case statements
of the AND gate code. An OR gate can be
fabricated from the AND gate code by
simply changing the output within the
case statements to 1 for any case state-
ment that contains a 1 as its argument.
To get the NOR function, invert the output
of the OR gate within the OR gate case
statements.

You can also emulate clocked logic
with the PIC10F206 as well, provided that
the clocked logic module you’re emulat-
ing doesn’t have more than three output
pins. A clocked logic block that immedi-
ately comes to mind is the D flip-flop.
When clocked, the Q output of a D
flip-flop will follow the logic level of the D
input with the NOT-Q output comple-
menting the logic level of the D input.

Compile the D flip-flop code in Listing
3 and jumper the D and NOT-Q GPIO
pins together. This will divide the incom-
ing clock by 2 and produce the divided
clock on the Q output pin. Feed the CLK

The Ever-Shrinking
μC — Part 2

Six Pins and One MIP — If You Can See It!

Project by Peter Best

//***
//* HI-TECH C SOURCE CODE FOR TOGGLER MODULE
//***
void main()
{
unsigned int x,y;

TRIS = 0b00001000; //GP3 input : all others output
FOSC4 = 0; //GP2 is an I/O pin
CMCON = 0b11110111; //comparator off:pullups off:wakeup off
OPTION = 0b11001111; //prescaler assigned to WDT
while(1)
{
++GPIO; //increment output pin set GP0, GP1, GP2
for(x=0;x<0xFFFF;++x) //delay by incrementing y 65534 times
++y; //increment y

}//while(1) //loop forever
}//main TOGGLER

//***
//* HI-TECH C SOURCE CODE FOR 2-INPUT AND GATE MODULE
//***
void main()
{
TRIS = 0b11111011; //GP2=output:all other GPIO=input
FOSC4 = 0; //GP2 is an I/O pin
CMCON = 0b11110111; //comparator off:pullups off:wakeup off
OPTION = 0b11001111; //prescaler assigned to WDT

while(1)
{
switch (GPIO & 0b00000011)
{
case 0b00000000: //GP0 = LOW:GP1=LOW
GP2 = 0; //GP2 = LOW
break;

case 0b00000001: //GP0 = HIGH:GP1=LOW
GP2 = 0; //GP2 = LOW
break;

Listing 3. Remember, the PIC10F206 has a 1 mS instruction cycle time.
So, although the logic will work as designed, the logic blocks we emulate

with the PIC10F206 won’t be as fast as the real thing.

(continued)

input of your PIC10F206 D FLIP-FLOP divide-
by-2 emulator from one of the three
PIC10F206 TOGGLER outputs. You’ll see the
division of whatever TOGGLER output clock
you feed to the CLK input on the Q output of
the D flip-flop emulated by the second
PIC10F206. Figure 1 (see Part 1 in last
month’s issue) physically depicts all of the
logic we’ve emulated or talked about so far.
The view from way up here is tremendous,
isn’t it?

Pulse Generation and
Signal Conditioning With
Little Bits

The 555 is a wonderful device. However,
it has its shortcomings, as it programs in an
analog fashion rather than a digital one. For
instance, it takes a few choice components
and some steering diodes to get a true %50
duty cycle pulse train directly from the output
of a 555. With the small bit of C in Listing 4
and a single PIC10F206, I’ve created a 60 Hz
pulse train with a 50% duty cycle.

The beginning of the code is very similar
to our logic examples, except that the
OPTION argument value has now assigned
the prescaler to TMR0 (Timer 0) by clearing
bit 3 of the OPTION register. Bits 0, 1, and 2
set the prescaler value to 1:64, which
instructs TMR0 to increment once every 64
instruction cycles.

The meat of the 60 Hz code is centered
on the TMR0 instructions. First, the TMR0
register is loaded with 0x80. After a couple of
synchronization cycles, TMR0 begins to
count upwards from 0x80. Visualizing this in
binary, the first count will be 0b10000001.
The second count will be 0b10000010 and so
forth until the count reaches 0b11111111
and then rolls over to 0b00000000.

When the count rolls over to
0b00000000, the most significant bit is no
longer set and the while(TMR0 & 0x80);
becomes false, allowing the code to fall
through to the next statement, which is GP2 =
0;. At this point, the code shifts the logic level
of GP2 to low and spins in the TMR0 loop,
just as it did when GP2 was high. You can
alter the frequency of the TMR0-generated
pulse train by toying with the three least
significant bits of the OPTION register. You
can also change the frequency by altering the
value loaded to TMR0 and then checking for
that value in the following while statement.

JANUARY 2005 43

The Ever-Shrinking μC — Part 2

case 0b00000010: //GP0 = LOW:GP1=HIGH
GP2 = 0; //GP2 = LOW
break;

case 0b00000011: //GP0 = HIGH:GP1=HIGH
GP2 = 1; //GP2 = HIGH
break;

}//switch
}//while(1)

}//main

//***
//* HI-TECH C SOURCE CODE FOR 2-INPUT AND GATE MODULE OPTIMIZED
//***
void main()
{
TRIS = 0b11111011; //GP2=output:all other GPIO=input
FOSC4 = 0; //GP2 is an I/O pin
CMCON = 0b11110111; //comparator off:pullups off:wakeup off
OPTION = 0b11001111; //prescaler assigned to WDT

while(1)
{
switch (GPIO & 0b00000011)
{
case 0b00000011: //GP2=HIGH only if both GP0 and GP1 are HIGH
GP2 = 1;
break;

default:
GP2 = 0;
break;

}//switch
}//while(1)

}//main

//***
//* HI-TECH C SOURCE CODE FOR D FLIP-FLOP MODULE
//***
void main()
{
TRIS = 0b11111100; //GP0=Q:GP1=NOT-Q:GP2=CLK:GP3=D
FOSC4 = 0;
CMCON = 0b11110111;
OPTION = 0b11001111;

//power-up clear operation
while(GP2); //wait for CLK to go LOW
GP0 = 0; //set Q
GP1 = 1; //clr Q

while(1)
{
while(!GP2); //wait for CLK to go HIGH
switch (GPIO & 0b00001000)
{
case 0b00000000: //D = 0
GP0 = 0; //clr Q
GP1 = 1; //set NOT-Q
break;

case 0b00001000: //D = 1
GP0 = 1; //set Q
GP1 = 0; //clr NOT-Q
break;

}//switch
while(GP2); //wait for clock to go LOW

}//while(1) //loop forever
}//main

(Listing 3, continued)

JANUARY 2005

It stands to reason that, if we can
control the frequency of a pulse train
generated by TMR0, we can also control the
duty cycle of that pulse train. A %50 duty
cycle means that every cycle has equal
high and low logic levels with respect to
time. If we apply that voltage to an LED, it
will be on for half the time and off for half
the time. If the frequency is high enough,
the LED may appear to be dimmer than it
would seem to be when full voltage is
applied to it. If we switch between on and
off fast enough, our eyes and mind will fool
us into thinking that the LED is really never
turning off. We can use this phenomenon
to our advantage with the second code
listing you see in Listing 4.

Let’s work our way through the LED
dimmer code inside out, beginning with the
inner do loop. The GP2 = 1 code is exactly
the same as our 60 Hz pulse train generator
except that the 0x80 hard-coded value is
replaced with a variable of y. The y variable
is initialized to a value of 0x04 in the begin-
ning of the code sequence. Recall that the
TMR0 register increments every instruction
cycle. So, the y count begins at
0b00000100 and ends at 0b00001000
when the TMR0 register rolls over to
0b00001000 from 0b00000111.

Looking at the GP2 = 0 code, it is exactly
the same as our previous 60 Hz code
for GP2 in a low logic state with the only
exception being the variable z holding the
0x80 value, which was loaded right after the y
value. What all of this means is that, initially,
the high part of the cycle is much smaller
than the low part of the cycle with respect to
time, which, in turn, says that the LED will
initially be off longer than it is on and will
appear to be very dim. Each duty cycle
period is alive as long as x is not equal to
zero. The while(—x) decrements x with each
pass through the inner do loop. The outer do
loop initializes x, doubles y, and halves z at
the completion of each pulse train cycle.

Since y is the variable that determines
the high level time of each cycle and z is the
variable that determines the low level time
of each cycle and the values are approach-
ing each other from the opposite directions,
when y is equal to 0b10000000, z will be
equal to 0b00000010. At this point, the
LED will be at its brightest, since the high
part of the cycle (y) will be much longer
than the low part of the cycle (z). The

44

N
U

T
S

&
VO

LT
S

Ev
er

yt
hi

ng
 F

or
 E

le
ct

ro
ni

cs

Project

//***
//* HI-TECH C SOURCE CODE FOR PULSE GENERATOR MODULE
//***
void main()
{

TRIS = 0b00001000; //GP3 input : all others output
FOSC4 = 0; //GP2 is an I/O pin
CMCON = 0b11110111; //comparator off:pullups off:wakeup off
OPTION = 0b11000101; //prescaler assigned to TMR0 @ 1:64

while(1) //loop forever
{

GP2 = 1; //GP2 = HIGH
TMR0 = 0x80; //load TMR0
while(TMR0 & 0x80);//count from 0b10000000 to 0b00000000

GP2 = 0; //GP2 = LOW
TMR0 = 0x80; //load TMR0
while(TMR0 & 0x80);//count from 0x80 to 0x00

}//while(1)
}//main

//***
//* HI-TECH C SOURCE CODE FOR LED DIMMER MODULE
//***

void main()
{
unsigned char x,y,z;

TRIS = 0b00001000; //GP3 input : all others output
FOSC4 = 0; //GP2 is an I/O pin
CMCON = 0b11110111; //comparator off:pullups off:wakeup off
OPTION = 0b11000010; //prescaler assigned to TMR0 @ 1:8

y = 0x04; //initialize y
z = 0x80; //initialize z

while(1) //loop forever
{
do //outer do loop
{

x=0xFF;

do //inner do loop
{

GP2 = 1; //GP2 = HIGH
TMR0 = y; //load TMR0
while(TMR0 & y); //count for y time

GP2 = 0; //GP2 = LOW
TMR0 = z; //load TMR0
while(TMR0 & z); //count for z time

}while(--x); //do inner loop until x is decremented to 0

y *= 2; //multiply y x 2
z /= 2; //divide z by 2

}while(y); //do outer loop until y = 0

y = 0x04; //reinitialize y
z = 0x80; //reinitialize z

}//while(1)
}//main

Listing 4. I’m sure there are some really weird analog things that you can do
with a 555, but the PIC10F206 can hold its own against the 555 when it comes

to handling and generating pulses.

(continued)

visual effect you will see is the LED going
from dim to bright continually.

Delays and pulse trains can also be
created with the PIC10F206 by utilizing
code similar to that which is used in
TOGGLER (Listing 3). Delays that last
for seconds can easily be achieved by
looping on a for construct like the one
used in the TOGGLER code (available at
www.nutsvolts.com).

Take a look at the voltage booster
circuit in Schematic 1 (see Part 1 in last
month’s issue). The 2N2222A alternately
builds and collapses the field formed by
the inductor. The steering diode routes
the inductor’s energy into the 100 μF
capacitor. The build-up and collapse of
the magnetic field is caused by switching
the transistor on and off rapidly with a
pulse train provided by a PIC10F206. The
code (part of Listing 4) is identical to the
60 Hz pulse train code, except that the
TMR0 prescaler is set for 1:2 and the duty
cycle of the pulse train is heavily biased
to the logic low level. This may, at first,
seem backward. However, the energy
from the inductor is transferred to the
capacitor when the transistor is turned
off. When the transistor is on, the induc-
tor is allowed to ramp up a charge.

By rapidly switching the inductor on
and off, we are able to feed the inductor’s
energy through the diode and charge the
output capacitor to a voltage that is high-
er than the input voltage at the inductor.
The little circuit you see in Schematic 1,
in combination with the voltage booster
code in Listing 4, generates about +10
VDC across the output capacitor. You can
obtain a much higher voltage by tweaking
the pulse train’s duty cycle.

In addition to generating pulses, the
PIC10F206 can also be programmed to condition pulses.
Let’s use some TMR0 code we’ve already written and
create a one-shot timer with a built-in switch debouncer.
We’ll only need a push-button switch and a resistor, as
shown by the one-shot section of Schematic 1.

The C code is straightforward. GP3 is the input from
the switch/resistor combination. When the switch is open,
GP3 is held low by the 20K resistor. The while(!GP3) loops
waiting for GP3 to go high. When the switch is closed, GP3
goes high and the TMR0 debounce code is executed; 35
mS later, GP2 goes high and the one-shot delay loop runs.
When the one-shot delay loop falls through, GP2 is cleared
to a logic low level and — if the switch is still depressed —
the while(GP3) statement loops until the push-button is

released. The switch is again debounced when released
and the one-shot-switch-debounce process repeats from
the beginning statement (while(!GP3)).

Now you can see that handling pulse trains and delays
with the PIC10F206 is easy to do. So far, we have enabled
a crude PWM (Pulse Width Modulation) function with our
LED dimmer code and the one-shot code conjures up lots
of other possibilities. The same one-shot code could be
used to enable a pulse stretcher or pulse shrinker. A
missing pulse detector is yet another coding possibility.
The bottom line is that precious microcontroller CPU
cycles can be offloaded to the PIC10F206 as it can
perform mundane tasks, such as debouncing switches and
conditioning incoming signals.

The Ever-Shrinking μC — Part 2

JANUARY 2005 45

//***
//* HI-TECH C SOURCE CODE FOR VOLTAGE BOOSTER MODULE
//***
void main()
{

TRIS = 0b00001000; //GP3 input : all others output
FOSC4 = 0; //GP2 is an I/O pin
CMCON = 0b11110111; //comparator off:pullups off:wakeup off
OPTION = 0b11000000; //prescaler assigned to TMR0 @ 1:2

while(1) //loop forever
{
GP2 = 1; //GP2 = HIGH
TMR0 = 0x04; //load TMR0
while(TMR0 & 0x04); //count from 0b00000100 to 0b00001000

GP2 = 0; //GP2 = LOW
TMR0 = 0x80; //load TMR0
while(TMR0 & 0x80); //count from 0x80 to 0x00

}//while(1)
}//main
//***
//* HI-TECH C SOURCE CODE FOR ONE-SHOT MODULE
//***
void main()
{
unsigned int x,y;
TRIS = 0b00001000; //GP3 input : all others output
FOSC4 = 0; //GP2 is an I/O pin
CMCON = 0b11110111; //comparator off:pullups off:wakeup off
OPTION = 0b11000111; //prescaler assigned to TMR0 @ 1:256

GP2 = 0x00; //clear GP2
while(1) //loop forever
{
while(!GP3); //wait for GP3 to go HIGH
TMR0 = 0x80; //debounce the switch closure
while(TMR0 & 0x80); //loop for 35mS using TMR0 with prescaler @ 1:256
GP2 = 1; //set GP2
for(x=0;x<0xFFFF;++x) //delay for one-shot time
++y;

GP2 = 0; //clear GP2
while(GP3); //wait for button release:GP3 to go LOW
TMR0 = 0x80; //debounce button release
while(TMR0 & 0x80); //loop for 35mS

}
}

(Listing 4, continued)

Project

JANUARY 2005

Communicating With Little Bits
There are no USARTs (Universal Synchronous

Asynchronous Receiver Transmitters) or UARTs (Universal
Asynchronous Receiver Transmitters) contained within the
PIC10F206 silicon. So, there’s no native PIC10F206 serial

communications functionality. Just because the special-
ized UART hardware doesn’t exist doesn’t mean we can’t
implement a software PIC10F206 UART of our own.

In fact, we can do just that and — thanks to the HI-TECH
PICC C compiler — we won’t have to write any of the serial
communications drivers from scratch. All of the bit-bang seri-
al driver code that comes with HI-TECH PICC C compiler is
shown in Listing 5. You can study the code in detail if you
wish. However, the only things you have to know about the
serial driver are the serial functions that you will use when
applying the driver code. To send a character, use the putch
function. To receive a character, use the getch function. A
optional function called getch echoes the incoming character.

This is where the 20-pin female connector I added to my
Little Bits comes into play. As you can see in Figure 6, I’ve
called upon a Digital Filter Development Board to aid the
Little Bits in getting its serial port operational. I’ve wired the
Digital Filter Development Board’s SP233ECT RS-232 IC
into one of the PIC10F206 microcontrollers on Little Bits via
a 20-pin male header on the Digital Filter Development
Board. Only four connections are necessary, with power and
ground being givens. Look again at the beginning of the
code in Listing 5. You’ll see that I’ve designated GP2 as the
transmit pin and GP3 as the receive pin and specified a baud
rate of 9600 bps. I’ve detailed the PIC10F206-to-Digital Filter

Figure 6. The Digital Filter Development Board is teamed up
with a Little Bits to complete the realization of a

PIC10F206 bit-bang serial port.

Interface a sharp LCD display to your BASIC Stamp® or other
micro-controller project with ease. No-solder wiring harnesses
and easy mounting kits available too. See www.seetron.com today.

• 3.2 x 1.4 in. supertwist LCD
• 2400/9600 baud serial
• Low (≈2mA) current draw
• Great with BASIC Stamps®

• 3.2 x 2 in. backlit LCD
• 1200-9600 baud serial
• Advanced protocol, 4 switch inputs
• EEPROM for configuration settings
• Favorite for OEM applications

• 3.2 x 1.4 in. graphics LCD
• 2400/9600 baud serial
• Font and 15 screens in EEPROM
• Easily draw points, lines, screens

• 3 x 2 in. supertwist LCD
• 1200-9600 baud serial
• ESD-protected, 4x4 keypad input
• Store up to 95 screens in EEPROM

ILM-216L

SGX-120L

TRM-425L

BPI-216N

1939 S. Frontage Rd. #F, Sierra Vista, AZ 85635
phone 520-459-4802 • fax 520-459-0623
www.seetron.com • sales@seetron.com

46

N
U

T
S

&
VO

LT
S

Ev
er

yt
hi

ng
 F

or
 E

le
ct

ro
ni

cs

Circle #117 on the Reader Service Card. Circle #123 on the Reader Service Card.

Development Board
hardware connections
in the RS-232 box of
Schematic 1.

Now we’re ready to
send some characters. I
set up a Tera Term Pro
session on my personal
computer and tuned it
in for 9600 bps. I then
wrote the C code you
see at the bottom of
Listing 5. The code
sends the string NUTS
& VOLTS continually.
The string I defined at
the beginning of my
code is actually stored in the PIC10F206’s program Flash
area and is automatically terminated with a null or zero
character by the HI-TECH PICC C compiler.

I’ve pulled the psect that details how the characters in
the string are stored and placed it under my code so you
can see how the HI-TECH PICC C compiler handles strings
in the Flash memory area. Putting the string in the program
Flash memory area is a good thing, as the PIC10F206 does-
n’t have enough SRAM to hold the string and do other
SRAM related things at the same time. Pretty clever, huh?

The null character that signifies the end of the string
comes in handy, as I can simply test for it as I send characters

COMMAND PRODUCTIONS
FCC LICENSE TRAINING - Dept. 220
P.O. Box 3000 • Sausalito, CA 94966
Please rush FREE details immediately!
Name

Address

City State Zip

Be an FCC
LICENSED
ELECTRONIC TECHNICIAN

Not satisfied with your present income?
Add prestige and earning power to your
electronics career by getting your FCC
Government License.
The Original Home-Study course pre-
pares you for the “FCC Commercial
Radiotelephone License” at home in your
spare time.
This valuable license is your professional
“ticket” to thousands of exciting jobs in:
Communications, Radio-TV, Microwave,
Maritime, Radar, Avionics & more…you
can even start your own business!
No need to quit your job or go to school.
This proven “self-study” course is easy,
fast and low cost!

GUARANTEED TO PASS – You get your
FCC License or your money will be refunded.

Call for FREE facts now!
(800) 932-4268 Ext. 220

www.LicenseTraining.com

You can earn more money
if you get an FCC License!

Learn at home in your
spare time.

or mailcoupon
today

No previous experience needed!

Earn up to
$100 an hour

and more!

// *
// * Serial port driver (uses bit-banging)
// * for 16Cxx series parts.
// *
// * IMPORTANT: Compile this file with FULL opti-
mization
// *
// * Copyright (C)1996 HI-TECH Software.
// * Freely distributable.
// * Adapted for use with the PIC10F20X by Peter
Best

#include<pic.h>
__CONFIG(MCLRDIS & WDTDIS & UNPROTECT);

//Tunable parameters
//Transmit and Receive port bits
#define SERIAL_PORT GPIO
#define SERIAL_TRIS TRIS
#define TX_PIN 2 //GP2
#define RX_PIN 3 //GP3

//Xtal frequency
#define XTAL 4000000

//Baud rate
#define BRATE 9600

Listing 5. This code takes up almost half of the PIC10F206’s
program Flash.That still leaves enough room to make effective

use of the serial port this code creates.

JANUARY 2005 47

(continued)

Circle #135 on the Reader Service Card.

HI-TECH Software
HI-TECH PICC C compiler

www.htsoft.com

Microchip
MPLAB ICE 2000

PIC10F206
MPLAB IDE

www.microchip.com

EDTP Electronics, Inc.
Little Bits

Digital Filter Development Board
www.edtp.com

Sources

Project

out of the PIC10F206 serial
port. Once I encounter a
null, I know that I have sent
the entire string and I send a
carriage return and line feed
combination. A simple delay
loop is executed and the bit-
bang serial process sends
another NUTS & VOLTS
message.

Good Things in
Small Packages

Okay, let’s begin our
descent and land this thing.
As you have seen, lots of
useful things can be done
with a tiny PIC10F206, its
four I/O lines, and a good C
compiler like the HI-TECH
PICC C compiler. The air
is really clear at 23,000
feet. You have seen for
yourself that using a C
compiler with a tiny PIC
like the PIC10F206 is not
necessarily a bad thing.

Whether you code in
assembler or C, the
PIC10F20X series of micro-
controllers is a blast to work
with. I’m sure you’ll want to
try your hand at some tiny
applications, as well. So, I’ll
make all of the Little Bits
code in the listings available
for download from the Nuts
& Volts FTP server (www.
nutsvolts.com).

For those of you who
want to melt some solder
around a PIC10F206,
either the Wahl Iso Tip
portable soldering iron
with a 7566-100 micro tip
or a Metcal Soldering
Station with a SSC-645A
soldering element is per-
fect for the task. If you
don’t want to roll your own
Little Bits, you can get a kit
of parts or an assembled
Little Bits unit from EDTP
Electronics (www.edtp.
com). NV

//Don't change anything else
#define SCALER 10000000
#define ITIME 4*SCALER/XTAL // Instruction cycle time
#if BRATE > 1200
#defineDLY 3 // cycles per null loop
#defineTX_OHEAD 13 // overhead cycles per loop

#else
#defineDLY 9 // cycles per null loop
#define TX_OHEAD 14

#endif
#define RX_OHEAD 12 // receiver overhead per loop

#define DELAY(ohead) (((SCALER/BRATE)-(ohead*ITIME))/(DLY*ITIME))

static bit TxData @ (unsigned)&SERIAL_PORT*8+TX_PIN; // Map TxData to pin
static bit RxData @ (unsigned)&SERIAL_PORT*8+RX_PIN; // Map RxData to pin
#define INIT_PORT SERIAL_TRIS = 1<<RX_PIN // set up I/O direc-
tion

void putch(char c)
{
unsigned char bitno;
#if BRATE > 1200
unsigned char dly;

#else
unsigned int dly;

#endif

INIT_PORT;
TxData = 0; // start bit
bitno = 12;
do
{
dly = DELAY(TX_OHEAD);// wait one bit time
do // waiting in delay loop
while(--dly);

if(c & 1)
TxData = 1;

if(!(c & 1))
TxData = 0;

c = (c >> 1) | 0x80;
}while(--bitno);
NOP();

}

char getch(void)
{
unsigned char c, bitno;
#if BRATE > 1200
unsigned char dly;

#else
unsigned int dly;

#endif

for(;;)
{
while(RxData)
continue; // wait for start bit

dly = DELAY(3)/2;
do // waiting in delay loop
while(--dly);

if(RxData)
continue; // twas just noise

bitno = 8;
c = 0;

(Listing 5, continued)

48

N
U

T
S

&
VO

LT
S

Ev
er

yt
hi

ng
 F

or
 E

le
ct

ro
ni

cs

JANUARY 2005

(continued)

The Ever-Shrinking μC — Part 2

do
{
dly = DELAY(RX_OHEAD);
do // waiting in delay loop
while(--dly);

c = (c >> 1) | (RxData << 7);
}while(--bitno);
return c;

}
}

char getche(void)
{
char c;

putch(c = getch());
return c;

}

//***
//* HI-TECH C SOURCE CODE FOR RS-232 MODULE
//***

const char * string = "NUTS & VOLTS";

void main()
{
unsigned char x;
unsigned int y,z;

FOSC4 = 0;
CMCON = 0b11110111;
OPTION = 0b11001111;

while(1) //loop forever
{
x = 0; //initialize character index
do
{
putch(string[x++]); //send character indexed by x: increment x

}while(string[x]!= 0);//look for null character at end of string
putch(0x0D); //send carriage return
putch(0x0A); //send line feed
for(y=0;y<0xFFFF;++y) //delay for a while
++z;

}
}
//***
//* HOW THE STRING IS STORED IN FLASH
//***

248 psect strings
249 018 u19
250 018 84E retlw 78 ;'N'
251 019 855 retlw 85 ;'U'
252 01A 854 retlw 84 ;'T'
253 01B 853 retlw 83 ;'S'
254 01C 820 retlw 32
255 01D 826 retlw 38 ;'&'
256 01E 820 retlw 32
257 01F 856 retlw 86 ;'V'
258 020 84F retlw 79 ;'O'
259 021 84C retlw 76 ;'L'
260 022 854 retlw 84 ;'T'
261 023 853 retlw 83 ;'S'
262 024 800 retlw 0

(Listing 5, continued)

JANUARY 2005 49

HandsOn Technology

http://www.handsontec.com

Low Cost 8051C Starter Kit/ Development Board HT-MC-02

HT-MC-02 is an ideal platform for small to medium scale embedded systems
development and quick 8051 embedded design prototyping. HT-MC-02 can be used as
stand-alone 8051C Flash programmer or as a development, prototyping and
educational platform

Main Features:

 8051 Central Processing Unit.
 On-chip Flash Program Memory with In-System Programming (ISP) and In Application

Programming (IAP) capability.
 Boot ROM contains low level Flash programming routines for downloading code via the

RS232.
 Flash memory reliably stores program code even after 10,000 erase and program cycles.
 10-year minimum data retention.
 Programmable security for the code in the Flash. The security feature protects against

software piracy and prevents the contents of the Flash from being read.
 4 level priority interrupt & 7 interrupt sources.
 32 general purpose I/O pins connected to 10pins header connectors for easy I/O pins

access.
 Full-duplex enhanced UART – Framing error detection Automatic address recognition.
 Programmable Counter Array (PCA) & Pulse Width Modulation (PWM).
 Three 16-bits timer/event counters.
 AC/DC (9~12V) power supply – easily available from wall socket power adapter.
 On board stabilized +5Vdc for other external interface circuit power supply.
 Included 8x LEDs and pushbuttons test board (free with HT-MC-02 while stock last) for fast

simple code testing.
 Industrial popular window Keil C compiler and assembler included (Eval. version).
 Free Flash Magic Windows software for easy program code down loading.

PLEASE READ HT-MC-02 GETTING STARTED MANUAL BEFORE OPERATE THIS BOARD

INSTALL ACROBAT READER (AcrobatReader705 Application) TO OPEN AND PRINT ALL DOCUMENTS

HandsOn Technology is a manufacturer of high
quality educational and professional electronics
kits and modules, uController
development/evaluation boards. Inside you will
find Electronic Kits and fully assembled and
tested Modules for all skill levels. Please check
back with us regularly as we will be adding many
new kits and products to the site in the near
future.
Do you want to stay up to date with electronics
and computer technology? Always looking for
useful hints, tips and interesting offers?

http://www.handsontec.com

Inspiration and goals...
HandsOn Technology provides a multimedia and
interactive platform for everyone interested in
electronics. From beginner to diehard, from student to
lecturer... Information, education, inspiration and
entertainment. Analog and digital; practical and
theoretical; software and hardware...
HandsOn Technology provides Designs, ideas and
solutions for today's engineers and electronics
hobbyists.

Creativity for tomorrow's better living...
HandsOn Technology believes everyone should have the tools, hardware, and resources to play
with cool electronic gadgetry. HandsOn Technology's goal is to get our "hands On" current
technology and information and pass it on to you! We set out to make finding the parts and
information you need easier, more intuitive, and affordable so you can create your awesome
projects. By getting technology in your hands, we think everyone is better off
We here at HandsOn like to think that we exist in the same group as our customers >> curious
students, engineers, prototypers, and hobbyists who love to create and share. We are
snowboarders and rock-climbers, painters and musicians, engineers and writers - but we all have
one thing in common...we love electronics! We want to use electronics to make art projects,
gadgets, and robots. We live, eat, and breathe this stuff!!
If you have more questions, go ahead and poke around the website, or send an email to
sales@handsontec.com. And as always, feel free to let your geek shine - around here, we
encourage it...

